1.

The area of an equilateral triangle is given by the formula $A = \frac{s^2 \sqrt{3}}{4}$.

- (a) Write the equation for $\log A$ in terms of $\log s$, $\log 3$ and $\log 4$.
- (b) Using the equation, find the exact area of an equilateral triangle whose perimeter measures 12 centemeters.
- (c) If $\log_2 x = 3$ and $\log_2 y = -3$ find the exact value of 2x + y in decimal form.

Answer	for	#1:
--------	-----	-----

2. If
$$\log x = a$$
, $\log y = b$, and $\log z = c$, then $\log \frac{x^2y}{\sqrt{z}}$ is equivalent to

1.
$$42a + b + \frac{1}{2}c$$

2.
$$2ab - \frac{1}{2}c$$

3.
$$a^2 + b - \frac{1}{2}c$$

4.
$$2a + b - \frac{1}{2}c$$

- 3. If $\log 7 = x$ and $\log 3 = y$, then $\log \sqrt{\frac{3}{7}}$ is equal to
 - 1. x-y
 - 2. y-x
 - 3. $\frac{1}{2}y x$
 - 4. $\frac{1}{2}(y-x)$
- 4. The expression $\log \sqrt{\frac{x}{y}}$ is equivalent to
 - $1. \quad \frac{1}{2}(\log x \log y)$
 - $2. \log \frac{1}{2}x \log \frac{1}{2}y$
 - $3. \quad \frac{1}{2}\log x \log y$
 - $4. \log \frac{1}{2}x \log y$
- 5. The magnitude (R) of an earthquake is related to its intensity (I) by $R = 1 \circ g\left(\frac{I}{T}\right)$, where T is the threshold below

which the earthquake is not noticed. If the intensity is doubled, its magnitude can be represented by

- 1. $2(\log I \log T)$
- 2. $\log I \log T$
- 3. $2 \log I \log T$
- 4. $\log 2 + \log I \log T$
- 6. The expression $\log \frac{\sqrt{x}}{y}$ is equivalent to
 - $1. \quad \frac{1}{2}(\log x \log y)$
 - $2. \ 2\log x \log y$
 - $3. \ \frac{1}{2} \log x \log y$
 - $4. \log \frac{1}{2}x \log y$
- 7. If $\log 28 = \log 4 + \log x$, what is the value of x?
- 1. 7 3. 24
- 2. 14 4. 32

8. If $2x^3 = y$, then $\log y$ equals

- 1. $\log(2x) + \log 3$
- 2. $3 \log (2x)$
- 3. $3 \log 2 + 3 \log x$
- 4. $\log 2 + 3 \log x$

9. $\bigsqcup_{\text{Log}} \frac{\sqrt{b}}{a^2}$ is equivalent to

- $1. \quad \frac{1}{2}\log b + 2\log a$
- $2. \quad \frac{1}{2}\log b 2\log a$
- $3. \ 2\log b \frac{1}{2}\log a$
- $4. \quad \frac{\frac{1}{2}\log b}{2\log a}$

10. The expression $\log 4m^2$ is equivalent to

- 1. $2(\log 4 + \log m)$ 3. $\log 4 + 2 \log m$
- $2.2 \log 4 + \log m$ $4. \log 16 + 2 \log m$

11. If $\log 3 = x$ and $\log 5 = y$, express $\log 45$ in terms of x and y.

- 1. 2*xy*
- 2. 2y + x
- 3. 2x y
- 4. 2x + y

12. If $\log_b 2 = 0.6931$ and $\log_b 3 = 1.0986$, then $\log_b \sqrt{12} =$

- 13. If $\log_b x = y$, then $\log_b x^2$ is
- 1. y+2 3. y-2
- 2. 2*y* 4. *y*

14. The expression $\log \frac{b^3}{\sqrt{a}}$ is equivalent to

- 1. $3b \frac{1}{2}a$
- $2. \log 3b \log \frac{1}{2}a$
- $3. 3 \log b \frac{1}{2} \log a$
- $4. 3 \log b 2 \log a$

15. If $u = \frac{x}{v^2}$, which expression is equivalent to $\log u$?

- 1. $\log x + 2 \log y$
- 2. $2(\log x \log y)$
- $3. \quad 2(\log x + \log y)$
- 4. $\log x 2 \log y$

16. The expression $\log_x(ab)$ is equivalent to:

- 1. $\log_x(a+b)$
- 2. $(\log_x a)(\log_x b)$
- 3. $\log (a_x + b_x)$
- 4. $\log_x a + \log_x b$

17. If $\log 3 = x$ and $\log 5 = y$, express $\log \left(\frac{5}{3}\right)^{\frac{1}{4}}$ in terms of x and y.

- 1. $\frac{1}{4}x + \frac{1}{4}y$
- 2. $\frac{1}{4}x \frac{1}{4}y$
- 3. $\frac{1}{4}y \frac{1}{4}x$
- 4. $\frac{1}{4}y + \frac{1}{4}x$

18. If $\log 2 = a$ and $\log 3 = b$, the expression $\log \frac{9}{20}$ is equivalent to

- 1. 2b a + 1
- 2. 2b a 1
- 3. $b^2 a + 10$
- 4. $\frac{2b}{a+1}$

19. Which logarithmic equation is equivalent to $L^m = E$?

- 1. $\log_L E = m$
- 2. $\log_E L = m$
- 3. $\log_m E = L$
- 4. $\log_E m = L$

	_
20.	If $\log a = x$ and $\log b = y$, what is $\log a \sqrt{b}$?

- 1. x + 2y2. 2x + 2y3. $\frac{x+y}{2}$
- 4. $x + \frac{y}{2}$

	2 ———	
21	Using logarithms: to the <i>nearest hundredth</i> , $\sqrt[3]{0.972}$	=
- 1 .	Comp logaritation to the mean est mantal earn, while	

22.

If $\log_b 5 = x$ and $\log_b 4 = y$, express $\log_b 100$ in terms of x and y.

Answer for #22:

23. If
$$\log x = \frac{1}{2} \log a - 3 \log b$$
, then x equals

- 1. $\frac{\sqrt{a}}{b^3}$ 2. $\sqrt{a} b^3$ 3. $\frac{1}{2}a$ 3. $\frac{1}{2}a 3b$

24. A black hole is a region in space where objects seem to disappear. A formula used in the study of black holes is the Schwarzschild formula, $R = \frac{2GM}{c^2}$.

Based on the laws of logarithms, log R can be represented by

- 1. $2 \log G + \log M \log 2c$
- 2. $\log 2G + \log M \log 2c$
- 3. $\log 2 + \log G + \log M 2 \log c$
- 4. $2 \log GM 2 \log c$
- 25. If $\log_b x = 3 \log_b p \left(2 \log_b t + \frac{1}{2} \log_b r\right)$, then the value of x is
 - $1. \ \frac{p^3}{\sqrt{t^2 r}}$
 - 2. $p^{3}t^{2}r^{\frac{1}{L}}$
 - 3. $\frac{p^3t^2}{\sqrt{r}}$
 - 4. $\frac{p^3}{t^2 \sqrt{r}}$
- 26. The speed of sound, v, at temperature T, in degrees Kelvin, is represented by the equation $v = 1087 \sqrt{\frac{T}{273}}$. Which

expression is equivalent to $\log v$?

- 1. $1087 + \frac{1}{2} \log T \log 273$
- 2. $1087 \left(\frac{1}{2} \log T \frac{1}{2} \log 273 \right)$
- 3. $\log 1087 + \frac{1}{2} \log T \frac{1}{2} \log 273$
- 4. $\log 2087 + 2 \log (T + 273)$
- 27. The inverse of a function is a logarithmic function in the form $y = \log_b x$. Which equation represents the original function?
 - 1. $y = b^x$
 - $2. \ y = bx$
 - 3. $x = b^y$
 - 4. by = x
- 28. The expression $\log \frac{a}{b}$ is equivalent to
 - 1. $\log a b$
 - 2. $\log(a-b)$
 - 3. $\log a \log b$
 - $4. \ \frac{\log a}{\log b}$

If $\log k = c \log v + \log p$, k equals

- 1. *v*^{*c*}*p*
- 2. $(vp)^{c}$
- 3. $v^c + p$
- 4. cv + p

The expression $\log \frac{a^3}{b}$ is equivalent to 30.

- 1. $3 \log a \log b$ 2. $3(\log a \log b)$
- $3. \ \ 3\left(\frac{\log a}{\log b}\right)$
- $4. \quad \frac{1}{3}(\log a \log b)$